List of scientific articles published  during the SmartSea project

One of the products of the SmartSea are the various scientific articles published by our partners during the project.

The scientific articles published so far:

  • Björkqvist, Jan-Victor & Rikka, Sander & Alari, Victor & Männik, Aarne & Tuomi, Laura & Pettersson, Heidi. (2020). Wave height return periods from combined measurement–model data: A Baltic Sea case study. 10.5194/nhess-2020-190. https://doi.org/10.5194/nhess-2020-190
  • Björkqvist, Jan-Victor & Tuomi, Laura & Tollman, Niko & Kangas, Antti & Pettersson, Heidi & Marjamaa, Riikka & Jokinen, Hannu & Fortelius, Carl. (2017). Brief communication: Characteristic properties of extreme wave events in the Baltic Sea. Natural Hazards and Earth System Sciences Discussions. 17. 1-8. 10.5194/nhess-17-1653-2017. https://doi.org/10.5194/nhess-17-1653-2017
  • Denderen, van, PD, Bolam, SG, Friedland, R, Hiddink, JG, Norén, K., Rijnsdorp, AD., Sköld, M., Törnroos, A., Virtanen, EA., & Valanko, S. (2019). Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat and regional scale using a modelling approach. ICES Journal of Marine Science, fsz219 https://doi.org/10.1093/icesjms/fsz219
  • Fransner, F., Gustafsson, E., Tedesco, L., Vichi, M., Hordoir, R., Roquet, F., … Nycander, J. (2018). Non-Redfieldian dynamics explain seasonal pCO2 drawdown in the Gulf of Bothnia. Journal of Geophysical Research: Oceans, 123. https://doi.org/10.1002/2017JC013019
  • Haavisto N, Tuomi L, Roiha P, Siiria SM, Alenius P, Purokoski T. 2018. Argo floats as a novel part of the monitoring the hydrography of the Bothnian Sea. Frontiers in Marine Science. 5:324. https://www.frontiersin.org/article/10.3389/fmars.2018.00324
  • Heinonen, J., Rissanen, S. 2017. Coupled-crushing analysis of a sea ice-wind turbine interaction – feasibility study of FAST simulation software, Ships and Offshore Structures https://doi.org/10.1080/17445302.2017.1308782
  • Höglund A., Pemberton P., Hordoir R. & Schimanke S. 2017. Ice conditions for maritime traffic in the Baltic Sea in future climate. Boreal Environment Research 22: 245–265. http://www.borenv.net/BER/archive/pdfs/ber22/ber22-245-265.pdf
  • Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., Haapala, J. (2019) “Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications”, Geosci. Model Dev., 12, 363–386, 2019 https://doi.org/10.5194/gmd-12-363-2019
  • Hordoir, R., Höglund, A., Pemberton, P., & Schimanke, S. (2017). Sensitivity of the overturning circulation of the Baltic Sea to climate change, a numerical experiment. Climate Dynamics, 1-13. DOI 10.1007/s00382-017-3695-9. “Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications”, 2019, Geoscientific Model Development, vol 12, no. 1, p. 363-386. DOI: 10.5194/gmd-12-363-2019 https://doi.org/10.5194/gmd-12-363-2019
  • Hordoir R., Samuelsson P., Schimanke S., Fransner F. Changes of the overturning of a fjord-type estuary in a warmer climate, a test case in the Northern Baltic sea, Continental Shelf Research, Volume 191, 2019, 104007, ISSN 0278-4343. https://doi.org/10.1016/j.csr.2019.104007
  • Jonsson, P. R., J. Kotta, H. C. Andersson, K. Herkül, E. Virtanen, A. N. Sandman, and K. Johannesson (2018). High climate velocity and population fragmentation may constrain climate-driven range shift of the key habitat former Fucus vesiculosus. Diversity and Distributions 24:892-905. https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.12733
  • Kaikkonen, L., Venesjärvi, R., Nygård, H., Kuikka, S. (2018). Assessing the impacts of seabed mineral extraction in the deep sea and coastal marine environments: Current methods and recommendations for environmental risk assessment. Marine Pollution Bulletin, 135, 1183–1197. https://doi.org/10.1016/j.marpolbul.2018.08.055
  • Kaikkonen, L., Virtanen, E. A., Kostamo, K., Lappalainen, J., & Kotilainen, A. T. (2019). Extensive coverage of marine mineral concretions revealed in shallow shelf sea areas. Frontiers in Marine Science, 6, 541. https://doi.org/10.3389/fmars.2019.00541
  • Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L., & Lehikoinen, A. (2020). Bayesian Networks in Environmental Risk Assessment: A review. Integrated Environmental Assessment and Management. DOI: 10.1002/ieam.4332 https://doi.org/10.1002/ieam.4332
  • Kallasvuo, M., Vanhatalo, J., & Veneranta, L. (2017). Modeling the spatial distribution of larval fish abundance provides essential information for management. Canadian Journal of Fisheries and Aquatic Sciences. 74(5): 636-649. https://doi.org/10.1139/cjfas-2016-0008
  • Kallio-Nyberg, I., Saloniemi, I., Koljonen, M.-L. (2020). Increasing temperature associated with increasing grilse proportion and smaller grilse size of Atlantic salmon. Journal of Applied Ichthyology. doi: 10.1111/jai.14033 https://doi.org/10.1111/jai.14033
  • Kallio-Nyberg, I., Veneranta, L., Saloniemi, I., Jokikokko, E., Leskelä, A. (2019). Different growth trends of whitefish (Coregonus lavaretus) forms in the northern Baltic Sea. Journal of Applied Ichthyology 2019: 1-9. doi: 10.1111/jai.13898 https://doi.org/10.1111/jai.13898
  • Kallio-Nyberg, I., Veneranta, L., Saloniemi, I., Salminen, M. (2018). Anadromous trout threatened by whitefish gill-net fisheries in the northern Baltic Sea. Journal of Applied Ichthyology. doi: 10.1111/jai.13771 https://doi.org/10.1111/jai.13771
  • Kaskela, A.M., Kotilainen, A.T., (2017). Seabed geodiversity in a glaciated shelf area, the Baltic Sea. Geomorphology, 295, 419–435. https://doi.org/10.1016/j.geomorph.2017.07.014
  • Kaskela, A.M., Kotilainen, A.T., Alanen, U., Cooper, R., Green, S., Guinan, J., van Heteren, S., Kihlman, S., Van Lancker, V., Stevenson, A., the EMODnet Geology Partners, (2019). Picking Up the Pieces—Harmonising and Collating Seabed Substrate Data for European Maritime Areas. Geosciences 2019, 9, 84. doi:10.3390/geosciences9020084 https://doi.org/10.3390/geosciences9020084
  • Katila, J. K. Ala-Rämi, S. Repka, E. Rendon, J.Törrönen, “Defining and quantifying the sea-based economy to support regional blue growth strategies – Case Gulf of Bothnia, Marine Policy”, Volume 100, 2019, Pages 215-225, ISSN 0308-597X, https://doi.org/10.1016/j.marpol.2018.11.035. https://doi.org/10.1016/j.marpol.2018.11.035
  • Kotilainen, A.T., Kaskela, A.M., (2017). Comparison of airborne LiDAR and shipboard acoustic data in complex shallow water environments: Filling in the white ribbon zone. Marine Geology 385, 250–259. https://doi.org/10.1016/j.margeo.2017.02.005
  • Kotta, J., Futter, M., Kaasik, A., Liversage, K., Rätsep, M., Barboza, F. R., . . . Virtanen, E. (2020). Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. Science of The Total Environment, 709, 136144. https://doi.org/10.1016/j.scitotenv.2019.136144
  • Kotta, J., Vanhatalo, J., Jänes, H., Orav-Kotta, H., Rugiu, L., Jormalainen, V., Bobsien, I., Viitasalo, M., Virtanen, E., Sandman Nyström, A., Isaeus, M., Leidenberger, S., Jonsson, P., Johannesson, K. (2019). Integrating experimental and distribution data to predict future species patterns. Scientific Reports 9(1), 1821. https://doi.org/10.1038/s41598-018-38416-3
  • Lappalainen, J., Virtanen, E., Kallio, K., Junttila, S., Viitasalo, M. (2019). Substrate limitation of a habitat-forming genus Fucus under different water clarity scenarios in the northern Baltic Sea. Estuarine, Coastal and Shelf Science 218: 31-38. https://www.sciencedirect.com/science/article/pii/S027277141730940X
  • Laurila-Pant , M , Mäntyniemi , S , Venesjärvi , R & Lehikoinen , A 2019 , ‘ Incorporating stakeholders’ values into environmental decision support : A Bayesian Belief Network approach ‘ , The Science of the Total Environment , vol. 697 , 134026 . https://www.sciencedirect.com/science/article/pii/S0048969719340033?via%3Dihub
  • Makkonen, L., Tikanmäki, M. (2018). Modelling frazil and anchor ice on submerged objects. Cold Regions Science and Technology 151:64-74. https://doi.org/10.1016/j.coldregions.2018.03.001
  • Mitchell, P.J., Spence, M.A., Aldridge, J., Kotilainen, A.T., Diesing, M. (2021). Sedimentation rates in the Baltic Sea: A machine learning approach. Continental Shelf Research, 214. https://doi.org/10.1016/j.csr.2020.104325. ISSN 0278-4343 https://doi.org/10.1016/j.csr.2020.104325
  • Moros, M., Kotilainen, A.T., Snowball, I., Neumann, T., Perner, K., Meier, H.E.M., Leipe, T., Zillén, L., Sinninghe Damsté, J.S., Schneider, R., (2020). Is ‘deep-water formation’ in the Baltic Sea a key to understanding seabed dynamics and ventilation changes over the past 7,000 years? Quaternary International, 550, 55-65. https://doi.org/10.1016/j.quaint.2020.03.031
  • Ø. Paasche, H. Österblom, S. Neuenfeldt, E. Bonsdorff, K. Brander, D. Conley, J. Durant, A. Eikeset, A. Goksøyr, S. Jónsson, O. Kjesbu, A. Kuparinen & N. Stenseth, (2015), “Connecting the Seas of Norden”, Nature Climate Change volume 5, pages 89–92. http://dx.doi.org/10.1038/nclimate2471
  • Pemberton, P., Löptien, U., Hordoir, R., Höglund, A., Schimanke, S., Axell, L., and Haapala, J.: Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO–LIM3.6-based ocean–sea-ice model setup for the North Sea and Baltic Sea, Geosci. Model Dev., 10, 3105–3123, 2017. https://doi.org/10.5194/gmd-10-3105-2017
  • Repka, S., Erkkilä-Välimäki, A. Jonson, J.A., Posch, M., Törrönen, J. and Jalkanen, J-P. (2021). IMO regulation of ship-originated SOx and NOx in the Baltic Sea: Assessing the costs and environmental impacts. Ambio, published online https://doi.org/10.1007/s13280-021-01500-6
  • Rahikainen, M., Hoviniemi, K., Mäntyniemi, S., Vanhatalo, J., Helle, I., Lehtiniemi, M., Pönni, J., Kuikka, S. (2017). Impacts of eutrophication and oil spills on the Gulf of Finland herring stock. Canadian Journal of Fisheries and Aquatic Sciences. DOI 10.1139/cjfas-2016-0108 https://doi.org/10.1139/cjfas-2016-0108
  • Roiha P, Siiria SM, Haavisto N, Alenius P, Westerlund A, Purokoski T. 2018. Estimating currents from Argo trajectories in the Bothnian Sea, Baltic Sea. Frontiers in Marine Science. 5:308. https://www.frontiersin.org/articles/10.3389/fmars.2018.00308/full
  • Rutgersson, Anna & Kjellström, Erik & Haapala, Jari & Stendel, Martin & Danilovich, Irina & Drews, Martin & Jylhä, Kirsti & Kujala, P. & Larsén, Xiaoli & Halsnæs, Kirsten & Lehtonen, Ilari & Luomaranta, Anna & Nilsson, Erik & Olsson, Taru & Särkkä, Jani & Tuomi, Laura & Wasmund, N.. (2021). Natural Hazards and Extreme Events in the Baltic Sea region. 10.5194/esd-2021-13. https://www.researchgate.net/publication/350669024_Natural_Hazards_and_Extreme_Events_in_the_Baltic_Sea_region
  • Sae-Lim P, Kause A, Mulder HA & Olesen I. (2017). Climate change and selective breeding in aquaculture. Journal of Animal Science. 95(4): 1801-1812. https://doi.org/10.2527/jas.2016.1066
  • Sorsimo, A., & Heinonen, J. (2019). Modelling of ice rubble in the punch shear tests with cohesive 3D discrete element method. Engineering Computations, 36(2), 378-399. https://doi.org/10.1108/EC-11-2017-0436
  • Tedesco L, Miettunen E, An BW, Haapala J, Kaartokallio H. Long-term mesoscale variability of modelled sea-ice primary production in the northern Baltic Sea. Elem Sci Anth. 2017;5:29. http://doi.org/10.1525/elementa.223
  • Tuomi L, Kanarik H, Björkqvist J-V, Marjamaa R, Vainio J, Hordoir R, Höglund A and Kahma KK (2019) Impact of Ice Data Quality and Treatment on Wave Hindcast Statistics in Seasonally Ice-Covered Seas. Front. Earth Sci. 7:166. doi: 10.3389/feart.2019.00166 https://www.frontiersin.org/articles/10.3389/feart.2019.00166/full
  • Vanhatalo, J. Hartmann, M., Veneranta, L. 2019. Joint species distribution modeling with additive multivariate Gaussian process priors and heterogenous data. Bayesian analysis, doi:0.1214/19-BA1158 https://doi.org/10.1214/19-BA1158
  • Vanhatalo, J. P., Hartmann, M., & Veneranta, L. (2019). Additive multivariate Gaussian processes for joint species distribution modeling with heterogeneous data. Bayesian analysis. https://doi.org/doi:10.1214/19-BA1158
  • Veneranta, L., Vanhatalo, J., & Urho, L. (2016). Detailed temperature mapping–Warming characterizes archipelago zones. Estuarine, Coastal and Shelf Science, 182, 123-135. https://doi.org/10.1016/j.ecss.2016.09.011
  • Virtanen, E.A., Viitasalo, M., Lappalainen, J., Moilanen, A. (2018). Evaluation, gap analysis, and potential expansion of the Finnish Marine Protected Area network. Frontiers in Marine Science 5(402): 1-19. https://doi.org/10.3389/fmars.2018.00402
  • Virtanen, E.A., Norkko, A., Nyström Sandman, A., Viitasalo, M. (2019). Identifying areas prone to coastal hypoxia – the role of topography. Biogeosciences 16: 3183-3195. https://doi.org/10.5194/bg-16-3183-2019
  • Virtanen, E. A., Moilanen, A., & Viitasalo, M. (2020). Marine connectivity in spatial conservation planning: analogues from the terrestrial realm. Landscape Ecology, 35(5), 1021-1034. doi:10.1007/s10980-020-00997-8 https://doi.org/10.1007/s10980-020-00997-8
  • Virtasalo, J.J., Korpinen, S., Kotilainen, A.T. (2018). Assessment of the influence of dredge spoil dumping on the seafloor geological integrity. Frontiers in Marine Science 5:131. doi: 10.3389/fmars.2018.00131 https://doi.org/10.3389/fmars.2018.00131
  • Virtasalo, J.J., Österholm, P., Kotilainen, A.T., Åström, M.E. (2020). Enrichment of trace metals from acid sulphate soils in sediments of the Kvarken Archipelago, eastern Gulf of Bothnia, Baltic Sea. Biogeosciences 17, 6097-6113. https://doi.org/10.5194/bg-17-6097-2020
  • Whitlock R. E., Kopra, J., Pakarinen, T., Jutila, E., Leach, A., Levontin, P., Kuikka, S. and Romakkaniemi, A. (2016) Mark-recapture estimation of mortality and migration rates for sea trout (Salmo trutta) in the northern Baltic Sea doi:10.1093/icesjms/fsw152. https://doi.org/10.1093/icesjms/fsw152
  • Weigel, B., Mäkinen, J., Kallasvuo, M., Vanhatalo, J. 2021. Exposing changing phenology of fish larvae by modeling climate effects on temporal early life-stage shifts. Marine Ecology Progress Series 666:135-148. https://doi.org/10.3354/meps13676